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1. Foreword

Performance and reliability are major concerns in the design of large disk arrays. Hellerstein
et al. pioneered the study of erasure-resilient codes that allow one to reconstruct data
without loss in the presence of disk failures. Chee, Colbourn, and Ling used the close
connection between erasure-resilient codes and certain combinatorial designs to establish
much improved asymptotic and exact existence results for these codes. The design-theoretic
approach provided the scientific basis for the project.

In the subsequent sections, we first provide the relevant background on the design of
erasure codes for RAID, contrasting these with the more extensively studied erasure codes
for digital communications. Then we summarize highlights of the research in the ARO
project now completed. Our research effort on codes for disk arrays revealed an unexpected
means of optimizing I/O performance through appropriate orderings of codewords. Indeed
our simulation results show a marked improvement in performance when codewords are
ordered such that consecutive sets of codewords exhibit a maximum overlap. We undertook
an investigation of optimal orderings for triple erasure codes, and obtained substantial results
on orderings for double erasure codes.
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4. Statement of the Problem Studied

Over the last decade, there has been a sustained exponential advance in the density and per-
formance of semiconductor technology. With this progress has come faster microprocessors
as well as larger and faster primary memory devices. Improvements in secondary storage
systems, on the other hand, have not kept pace. While the performance of RISC micropro-
cessors has been increasing by more than 50% per year [42], disk transfer rates, which depend
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on the speed of mechanical movements and magnetic media densities, have only improved by
about 20% each year [10]. This phenomenon has transformed many computationally-bound
applications into I/O-bound applications.

Amdahl [2] predicted three decades ago that unless accompanied by corresponding in-
creases in secondary storage performance, big increases in microprocessor performance can
only bring about marginal improvements in overall system performance. This disparity has
led to the consideration of parallelism as a means to speed up secondary storage systems.
Several ideas have been proposed as to how parallelism can be exploited. The most important
and successful is the disk array architecture.

The disk array architecture organizes many independent small disks into one large logical
disk. Small disks are preferable to large ones because they have a lower cost and consume
less power. For improved performance, disk arrays employ the concept of data striping [45],
which spreads data across multiple disks. This allows both single and multiple I/O requests
to be processed in parallel by separate disks, thus improving effective transfer rates. A
further advantage of disk striping is uniform load balance.

The more disks we have in a disk array, the higher the performance we obtain. Unfortu-
nately, large disk arrays have low probability of having all disks functional. Failures in disk
arrays are often assumed to satisfy the memoryless property, that is, the life expectancy of
a disk is dependent only upon the condition that the disk is working now. Under this as-
sumption, the reliability of a disk array is modeled by the exponential distribution [29]. As a
consequence, for low disk failure rates, the failure rate of a disk array is directly proportional
to the number of disks it contains. Many applications, notably database and transaction
processing systems, require both high throughput and high data availability of their storage
systems. The most demanding of these applications require continuous operation, which in
terms of a storage system requires (i) the ability to satisfy all requests for data even in the
presence of disk failures, and (ii) the ability to reconstruct the content of a failed disk onto a
replacement disk, thereby restoring itself to a fault-free state. These requirements strongly
encourage the introduction of redundancy to tolerate disk failures. Disk arrays which in-
corporate redundancy have come to be known as Redundant Arrays of Independent Disks
(RAID).

There are three primary types of disk failures. Transient errors arise from noise corrup-
tion and are dealt with by repeating the requests. Media defects are caused by permanent
defects in material, and are detected and masked by the manufacturer. Catastrophic failures
include head crashes and failures of the disk controller electronics. When a disk suffers a
catastrophic failure, its data is rendered unreadable, and is effectively erased. We therefore
call such a disk failure an erasure. For convenience, we also call a set of k disk failures a
k-erasure. Error-correcting codes can be used to tolerate erasures. However, components in
disk arrays allow us to determine exactly where erasures have occurred. It is possible to take
advantage of this additional information to derive codes that are better than those based on
error-correcting codes.

Elias [28] apparently was the first to distinguish between erasures and errors, and to
develop a model of the erasure channel. Rabin [43] investigated erasure-resilient codes for
information dispersal. The intended application in Rabin’s work arises when losses are
frequent, and there is a relatively small overhead in having a large amount of redundant
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data. Alon et al. [1] also studied erasure-resilient codes to combat bursty losses in packet-
switched networks. The communications environment in which a substantial fraction of
packets are erased (lost) is a practical model of the Internet as currently deployed. For this
reason, erasure codes that deal with a large fraction of erasures have been very aggressively
studied. A sample of the most relevant papers in this area includes [37, 38, 6, 46]. Coding
files for broadcast or transmission permits both large scale loss and high levels of redundancy,
and involves typically a very large number of information and redundant (check) packets. In
disk arrays, however, one finds a very different application of erasure codes. In that context,
erasures are much rarer. More importantly, the sizes of the disk arrays involved is orders
of magnitude smaller than the number of packets in a file broadcast such as the Digital
Fountain [6]. Hence the parameters of erasure codes of interest are quite different in these
two applications, despite similar definitions and objectives.

Hellerstein et al. [32] first proposed the use of erasure-resilient codes for large disk arrays.
Chee, Colbourn, and Ling [8] extended their work, establishing an extensive combinatorial
framework for their study. By interpreting the coding problem in the context of extremal set
theory, we have already obtained new classes of optimal and asymptotically optimal erasure-
resilient codes. These codes improve and extend previous results in the literature. Our
treatment has also revealed interesting and surprising connections to combinatorial design
theory. The mathematical study of erasure codes, especially in the disk array context when
the number of erasures is small, lies within the theory of error-correcting codes [40]. In this
direction, relevant research concerns low density parity check matrices; see [4, 5, 35, 49],
especially [4], in which an application to RAID is discussed.

Hellerstein et al. [32] formulate the construction of erasure codes for disk arrays as
follows. A system of linear equations modulo 2 specifies the contents of ¢ check or parity
disks as functions of the contents of n information or data disks. Often these are represented
in matrix form using a parity check matrix H = [P|I|. H is a ¢ X (¢ + n) matrix of 0s and
1s. P is a ¢ X n matrix with rows indexed by check disks and columns by information disks,
so that the (7, 7) entry is 1 if and only if information disk j is checked by check disk . I is
a ¢ X c¢ identity matrix with rows and columns indexed by the check disks.

An [n, ¢, k]-erasure-resilient code, or briefly an [n, ¢, k]-ERC, consists of an encoding al-
gorithm &£ and a decoding algorithm D with the following properties. Given an n-tuple S
of stripes, £ produces an (n + ¢)-tuple or codeword E(S) = (E1(S),...,Enre(S)) of stripes
such that for any I C {1,...,n}, where |I| = n + ¢ — k, the decoding algorithm D is able
to recover S from (I,{&(S) | ¢« € I}). We often call an [n, ¢, k]-ERC a k-ERC when the
parameters n and ¢ are not important in the context.

Erasure correction capability (reliability) is completely specified by the parity check ma-
trix: A set of disk failures can be corrected if and only if the corresponding set of columns
of H is linearly independent modulo 2 [32]. Aspects of performance are also specified by the
structure of this matrix. In particular, the column sums of P specify the update penalties,
reflecting the cost of writing redundant information when a data disk is written. The row
sums of H specify the group sizes, indicating the cost of reconstructing a failed disk. The
ratio of ¢ to n is the check disk overhead, the additional cost in terms of number of disks
which we incur in order to maintain the redundant information. More precisely, we have:

Check disk overhead: This is the ratio of the number of check disks to information disks.




An [n, c, k]-ERC has a check djsk overhead of ¢/n.

Update penalty: This is the number of check disks whose content must be changed when
an update is made in the content of a given information disk. We call these disks
the disks associated with the information disk. If m check disks need to be involved in
every write, then the parallelism of the disk array is reduced by a factor of m+1. Since
parallelism is the reason behind using disk arrays, update penalties should be kept as
small as possible. The update penalties of an erasure-resilient code with parity-check
matrix H = [C | I] are the column sums of C.

Group size: This is the number of disks that must be accessed during the reconstruction
of a single failed disk. The cost of reconstruction makes small group size desirable,
while for load balancing reasons, uniform group size is desirable. The group sizes of
an erasure-resilient code are the row sums of its parity-check matrix.

Since updates of data are usually much more frequent than the reconstruction of data lost
in erasures, the update penalties are typically of more concern than the group sizes.

For performance reasons, the erasure-resilient codes studied are assumed to satisfy two
conditions:

1. We restrict ourselves to systematic codes. An [n,c, k]-ERC is systematic if £;(S) = S;
for 1 <¢ < n, where S = (5y,...,S,). The stripes &;(S), for n < i < n + ¢, are called
checks. This means that the encoding function leaves the data unmodified on some
disks. This property is desirable to avoid read penalties associated with decoding when
there are no disk failures.

2. We restrict ourselves to linear codes over the field of order 2¥, where L is the bit-size
of a stripe. In this case, we interpret a stripe as an L-dimensional vector over the field
of order 2, and £ is a linear function. Hence, computations used to encode a stripe are
restricted to component-wise modulo two arithmetic, that is, the parity (or ‘exclusive
or’) operation @. This restriction ensures that encodings and manipulations can be
performed efficiently.

5. Summary of the Most Important Results

To date, our research has concerned reliability of parity check matrices whose update penal-
ties are as small as possible,.while still correcting for all sets of d or fewer erasures. We have
concentrated on cases when d = 3 or 4. Chee et al.[8] describe optimal codes for correcting
three or more erasures arising from Steiner triple systems. These are codes which provide
minimal update penalty, small group size and a reasonable check disk overhead. In addition,
anti-Pasch Steiner triple systems are a class of codes that provide higher resilience; see[8].

In order to understand performance within a class of codes offering similar erasure reli-
ability and to understand if the added resilience of anti-Pasch codes affects performance we
implemented a computer simulation.




RaidSim

RaidSim [33, 34] is a simulation program written at the University of California at Berkeley
[34]. Holland [33] extends it to include declustered parity and online reconstruction. The
raidSim program models disk reads and writes and simulates the passage of time. The
modified version described in [33], was further modified and used as our starting point for
experimentation.

Implementing a 3-erasure code is expensive due to the high update penalty for each write.
It is therefore imperative to understand how various factors in designing these codes impact
overall performance. Our experiments were designed to gain insight into what these factors
might be, and how they might affect the behavior of 3-erasure codes. The first issue in
mapping and layout of a disk array is that of modeling reads and writes. In a single error
correcting disk array the basic unit is a parity stripe or group. There can be no overlap
of disk accesses. One check disk is assigned to each information disk in each group. Two
basic types of writes have been described [33]. If more than half of the parity stripe is being
written then all of the remaining information disks in the stripe are pre-read, the parity for
the stripe is computed and the new data and parity are written [33]. If however, the new
data writes to less than half of the parity stripe, a read-modify-write is preferred [33]. In this
case the requested information disks and their associated check disks are pre-read, the new
parity is computed and then the new data and parity is written back out.

In a multiple erasure code, some differences arise. The basic assumption that one check
disk is assigned to each data disk is no longer valid. Multiple data disks in the same stripe
may use the same check disk. This changes the manner in which a write must be performed.
In order to optimize performance it is necessary to avoid the unnecessary reading and writing
of a disk more than once within a single parity stripe when check disks coincide during an
individual write. Indeed, in a small write, if multiple information disks are involved, it may
not be necessary to read and write ¢ check disks for each data disk in a t-erasure code.
Although, the minimum update penalty of a ¢-erasure code remains t [32, 36], the actual
penalty may be reduced by changing the order of columns in the parity check matrix. We
focus our attention here on the read-modify-write. This is the more interesting type of write,
since it is an expensive operation in a triple erasure code and hence provides some potential
for improvement.

Every individual disk write in a three-erasure configuration could involve up to four reads
and four writes. When more than one disk in a stripe is being written, however, the number
of extra reads and writes per information disk may decrease due to overlap in check disks.
A diagram of how read-modify writes might occur in a triple-erasure code can be seen in
Figure 1. It shows a scenario in which data is striped across two disks with one check disk in
common. This might happen in a case where the two triples {1,2,3} and {1,4,5} are checking
two data disks used in the same write. In this case only five check disks are read and written.
(Check disk one only needs to be read and written once, saving two disk accesses.)

Thus the various orderings of the columns of the parity check matrix may reduce the
overall number of reads and writes.
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Tis is a scenario with 2 information disks in the same stripe that share one parity disk.
Each of the information disks is first read and written. Next the needed parity disks are read and
buffered in memory. Each parity in the buffer is XOR'ed with the old data and new data.

The new information is written back to each of the parity disks.

Figure 1: Read Modify Writes in a Steiner Triple System

Simulation Workload

Percent | Operation | Size(KB) | Alignment(KB)
Read

100% | Read | 72 | 24
Write

100% |  Write | 72 ] 24
Mixed

82% Read 72 24

18% Write 72 24

Table 1: Ordering Workload

Experiments

The performance experiments are run with a workload shown in Table 1. Approximately
100 experiments are run for each system. Each experiment is tested in fault free mode and
then with one, two, three, four and five simultaneous failures. All disk failures occur at the
start of the experiment and persist for the entire test.

We focus on Steiner triple systems of order 15. There are eighty non-isomorphic systems
of order 15. Six different systems were chosen with varying numbers of Pasch configurations.
System one and system eighty differ the most in the number of configurations and are there-
fore the most different structurally. To make sure that we did not neglect other differences
in these codes, we chose four other systems.

Three orderings are used for the experiments; these are discussed in more detail in [14].
The first is one in which the overlap among consecutive blocks is maximized for reads or
writes that span multiple disks. This could minimize the overall number of disk accesses
in a write which spans information disks. The second ordering has the property that every
set of three consecutive blocks are pairwise disjoint. The last, designed for comparison, is
randomly permuted.
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Performance Results

Interestingly, the structure of the codes does not appear to play a significant role in the
performance of these arrays. This is illustrated by Figure 2 which shows the results for the
permuted ordering under a workload of straight writes. These simulations do not appear to
distinguish between different systems of order 15. Similar results are observed using the other
two orderings. The structure of the code, however, does determine the erasure correction
capability of a code. Given that no observed performance differences are seen, anti-Pasch
Steiner triple systems may be more desirable in situations when higher reliability is desired
8]

Consistently, in all of these experiments, the order of columns in the parity check matrix
most reliably predicts performance. The lowest response times appear using the first order-
ing, labeled A. This is the ordering that attempts to maximize overlap among each group
of three consecutive information disks. The second ordering, B, gives the slowest response
time. 'This is the ordering that uses pairwise disjoint consecutive blocks. Response times
for the third ordering, C, lie between these two extremes. This is the permuted or random
ordering.

In a read-only workload there is no apparent difference in the performance of the various
orderings in fault free mode. This is expected since a read workload does not access the
check disks (see Figure 3). However, the response time starts to diverge as the number of
failed disks increases. This can be attributed to accesses to additional disks required in
reconstruction. As seen in Figure 4, the most dramatic difference in performance among the
different orderings is seen in a straight write workload. This is expected since writes incur a
significant update penalty. Although these account for only a small portion of the accesses
in a mixed workload, the overall performance pattern still follows that of a straight write
workload. This can be seen in Figure 5.

The results of this experimentation led us to ask fundamental questions about ordering
in Steiner triple systems and their application to RAID arrays. However, the more exciting
possibility arises for double erasure codes. With current sizes of disk arrays, triple erasure
correction is rarely needed [32]. Double erasure correction is needed more often [41], and a




Read Workload Comparision of Orderings for STS(15)
T T T T

2000
T

1500 F

1000

Average Response Tima(ms)

500 |

Steiner 15 systems combined
~630 experiments/data paint

L L
2 3 4 5
Number of Failures

Figure 3: Ordering Results - Straight Read Workload

Write Workload Comparision of Orderings for STS(15)
6000 T T T y

5000 [

a000 |

3000 |

2000 +

Average Response Time(ms)

1000

Steiner 15 systems combined
~630 experimemts/data point

L L
2 3 4 5
Number of Failures

Figure 4: Ordering Results - Straight Write Workload

number of practical schemes have been suggested [4, 41]. The general framework in [8, 32]
encompasses the schemes so far studied. In this framework, a scheme for double erasures
having all update penalties equal to two can be viewed as a graph. In particular, the P
matrix is the incidence matrix of a graph on c¢ vertices and n edges. Then the reliability
question is to characterize the c-vertex n-edge graph which corrects the largest number of
erasures of more than two disks (since all graphs give schemes to correct all sets of two
or fewer erasures). The performance question is to determine, among those graphs which
exhibit acceptable reliability, how to represent the parity check matrix (i.e. how to order
it) to optimize user response time, by reducing the effective update penalty for small writes.
Both questions are complicated by the need for scalability, the requirement that the disk
array be expandable to meet changing needs for information content. Scalability leads to
further ‘ordering’ questions, namely the order in which disks are to be removed from or
added to an existing disk array [32].

The impact of optimizing the selection of H for reliability is well understood in principle
[32], but the construction of highly reliable codes is not well developed [8]. In fact, these
constructions involve difficult open questions on combinatorial designs [30, 36]. The sub-
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stantial effect of the selection of the ordering of H on performance has become clear [11, 14]
as a result of the project research.

In addition to the effort described above which addresses the main focus of the completed
grant, the PI has been very active in the areas of combinatorial algorithms, and combinatorial
designs. In ARO Project DAAG-98-1-0272, “Reliability of Large Scale Disk Arrays”, we
have:

1. Implemented a simulation environment for the study of reliability of erasure codes for
the correction of three simultaneous erasures [11, 13].

2. Extended computational search techniques for generating optimal codes to correct for
three or four erasures [15, 8, 39].

3. Generalized a classical construction technique (the Bose method) for producing triple
erasure codes [24, 44].

4. Developed the essential mathematical machinery [36] for a complete solution to Erdos’s
problem [30] leading to an existence result for triple erasure codes.

5. Obtained preliminary results on structural aspects of erasure codes and their RAID
implementation [11, 14].

Concurrently, the methods developed in this research have found broad application to many
domains:

1. Multiple access communications for MT-MFSK signaling [26, 50, 51].
2. Design of bus networks [17].

3. Superimposed codes for nonadaptive group testing, for satellite reservation systems
[7, 9, 16] and for frameproof codes [47, 48].

4. Quorum systems for mutual exclusion [21, 22].




5. Ring grooming in SONET networks to minimize electrical/optical conversion [25].

General themes underlying these applications are discussed in [20], and specific issues are
addressed in [18].
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